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STATISTICAL ANALYSIS AND CONSIDERATIONS
OF POWER IN PROGRAM EVALUATION USING
TWO-STAGE SAMPLING DESIGNS

Guillermo Vallejo Seco, José Ramén Ferndndez Hermida and Roberto Secades Villa
University of Oviedo

La evaluacion de programas de prevencion acarrea errores de decision derivados principalmente de la dificultad de asig-
nar al azar las unidades individuales a las condiciones de investigacion. La eleccion de la unidad de analisis apropiada a
la hora de evaluar la efectividad del impacto esta determinada por la naturaleza de la intervencion y por el disefio de inves-
tigacion seleccionado. Cuando las unidades de asignacion y de observacion difieren entre si, esto es, cuando entidade:
colectivas mas que individuales son asignadas al azar a los tratamientos, los andlisis realizados en los niveles mas bajos
de la jerarquia proporcionan estimaciones ineficientes de los parametros y a menudo conducen a que las pruebas de sig-
nificacion sean inadecuadas. La meta de este trabajo es doble. Por un lado, presentar un método analitico que permite uti-
lizar los datos de cualquier nivel del disefio sin inflar las tasas de error. Y, por otro lado, determinar el nimero de grupos

y el tamafio de éstos en funcién de la variabilidad existente y de los costos.

Statistical analysis and considerations of power in program evaluation using two-stage sampling designs. Evaluation of
prevention programs involves decision errors due to the difficulty of randomly assigning individuals to research conditions.
The nature of the intervention and design of the study determine the choice of the appropriate unit of analysis in impact
assessments. When units of assignment and units of observation differ, that is, when clusters of people rather individuals
are assigned at random to treatments, the analyses conducted at lower levels of the study hierarchy provide inefficient para-
meter estimates, and often result in inappropriate significance tests. Therefore, the purpose of this paper is (a) to present
an analytical method that permits the use of data at all levels of design without increasing Type | error rates, and (b) to
determine the number of clusters and the sample size per group according to variability and cost.

he data from many research designs based on pro-any other reason, what they usually do is randomly
gram evaluation have a structure very similar to that assign some units configured prior to the intervention to
observed in cluster sampling designs with two or more the treatment condition and others to the control condi-
stages. In the simplest case, the researcher initially selectdion. A researcher who has proceeded in line with the
a random sample of clusters or primary sampling units, above will rarely select at random individual units of the
and then randomly selects the secondary sampling unitsprimary sampling units to then assign them at random to
within each of the clusters. The primary units can be scho- the program. In any case, even though it were possible
ols, classes, clinics or any other type of entity, and the to assign people within the groupings to the program, it
secondary units, teachers nested within schools, studentgloes not appear to be a desirable option, due, among
nested within classes or patients nested within clinics.  other reasons, to the probable diffusion of treatments. It
In all the cases mentioned above, collective units of is more frequent for the researcher to create the problem
analysis, more than individual units of analysis, consti- Of the unit of analysis, administering the treatment
tute the observational reference to which the treatment collectively to units originally assigned to the groups on
or social intervention program is directed. When resear- an individual basis. Researchers should therefore proce-
chers use collective units of analysis for reasons of €d with caution in these matters. It is clearly not the
logistics, political viability or ecological validity, or for Same to assign collective units at random to the preven-
tion program as it is to do so individually. Such confu-
The original Spanish version of this paper has been previously Sion not only restricts the researcher’s ability to unders-
published inPsicothema2003, Vol. 15. No 2, 300-308 tand the research design employed, but may also invali-
.('Z.c.).r}t.e"s.pondence concerning this article should be addressed to date the use of techniques based on the general or gene-
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The application of the techniques based on the modelssolution is provided by the linear mixed models, also
mentioned requires the satisfaction of certain assump-known as random-effects models, random components
tions, particularly that of independence between obsear- models, multilevel linear models, hierarchical models or
vations. When groups constitute the unit of analysis, it is mixed-effects regression models (Goldstein, 1995,
reasonable to think that the specific characteristics of the Aitkin & Longford, 1986; Laird & Ware, 1982;
groups are reflected in the data, since observations thatRaudenbush & Bryk, 2002, Oliver, Rosel & Jara, 2000).
are close in time, space or both dimensions at the samdf, on the other hand, the data follow any other member
time tend to be more homogeneous than observationsof the exponential family, the natural solution is provi-
that are farther apart. It is highly probable that the data ded by the generalized mixed models (Breslow &
drawn from natural groupings such as towns, health Clayton, 1993; Wolfinger & O’Connell, 1993). All of
communities or schools bear a certain similarity to each these models recognize the nested structure of the data
other, since they are exposed to common influences. ~orand allow estimation of the variances occurring in the
example, the pupils in a class talk to each other all the different strata produced by the grouping, in both trans-
time, share the same types of experiences and are subjeatersal and longitudinal studies.
to the same educational factors. Thus, as Shadish, Cook In the sections below we offer a brief introduction to
and Campbell (2002) point out, the observations recor- the general linear mixed model, we describe the estima-
ded from each unit will reflect both the effects of the tion techniques and we specify the inference procedures
individuality itself on the behaviour and the effects of for checking the hypotheses corresponding to the fixed
the collective variables on the individuals. The former effects and random effects of the model and the varian-
effects will vary within the collective units and across ce components. Finally, we use a randomized-groups
them, while the latter effects will vary only among the hierarchical design with pre-test and post-test to illustra-
different collective units. An indicator of the portion of te how to determine optimum sample sizes for determi-
total variability attributable to the unit of assignment is ning, in turn, the effects of the design. As Raudenbush
obtained by means of the intra-class correlation coeffi- (1997) points out, even though these models are particu-
cient. larly attractive, they tend arouse a degree of mistrust

Given that the members of a collective unit tend to be among researchers in view of their relative analytical
more similar than those that are not part of such a unit, complexity and possible lack of statistical accuracy cau-
a set of correlated observations provides less informa- sed by incorrect selection of the size of sampling units.
tion than a similar number of independent observations.

Thus, when statistical models that assume independencelhe general linear mixed model

between the units are applied to correlated data, there isThe standard linear model for explainimgbservations

an underestimation of standard errors of measurementtaken for each one of thpecovariants (predictors) and/or
(Carvajal, Baumler, Harrist & Parcel, 2001). In practice, factors (independent variables) can be written as

this means that both tests based on the classical linear

model and those based on the generalized linear model y=XB + e (2)

substantially increase the probability of rejecting the

null hypothesis when it is in fact true, and thus of lea- wherey is a vector of dimension x 1containing the
ding us to conclude that a program is effective when it is values of the response variab|pf§pr uniti in groupj (or
noncommittal actually totally ineffective. In sum, it for subject in timej), X is a design matrix of dimension
leads to researchers capitalizing on chance more ire-n x pthat specifies the fixed-effects values corresponding
guently than they should due to inefficient estimations to each parameter for each one of the observations (vec-
(Rinndskopf & Saxe, 1998). tors of zeroes and ones denote the absence and presence

In addition to non-fulfilment of the assumption of inde- of categorical effects for variables without metric structu-
pendence, when the data are organized hierarchicallyre, while numerical vectors denote the effects of the varia-
there is more than one source of random variance| in bles measured on a quantitative scdkels a vector of
them. Thus, neither techniques based on the generalnon-random parameters estimated from the data that may
linear model nor those based on the generalized lincarinclude variables of various types, aeds a vector of
model are appropriate, since, in all cases, they only unknown errors of dimensiam x 1distributed normally
allow us to determine the variation of a single compo- and independently with a mean of zero and constant
nent. If the data follow a normal distribution, the natural variance. The coefficients of the vedare fixed-effects
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parameters that describe the average behaviour of [thecontrast to the case of the classical model, do not need to
population. However, it may occur that not all the terms be independent or homogeneous.
of the model take constant values in the successive repe- The distributional assumptions of the model imply that
titions of the study, and that, rather, some are seen as thehe residual coefficients are distributed normally and
result of extracting samples at random from a normal dis- independently, with meafl and covariance matri,
tribution (random-effects models). Moreover, if the whereG is a block-diagonal matrix of dimensidk x
design matrix includes covariants, it is also possible that Jk, with each blocks; of dimensiork x kcontaining the
the parameters of vectBrdo not represent correctly the variances and covariances of the random effects for each
relationship betweeX andy for some subjects or groups, one of the second-level units, or for each one of the sub-
Consequently, it is necessary to employ an approach thatiects where repeated measures are used. It is also assu-
permits the researcher to establish a global relationshipmed that the error vecter as well as being independent
between the variables for all the subjects and to model of the vectow, is distributed normally with medhand
separate relationships that vary randomly among the sub-covariance matriR, whereR is a block-diagonal matrix
jects (random-coefficients models). of the ordern x n with each blockR; containing the
The linear mixed model provides the appropriate solu- variances and covariances of the errors within the sub-
tion for dealing with the problem in question, since it jects. If it is fulfilled thate ~ N (0, R), u ~ N (0,G) and
does not require the assumption that selection of thecov(r, u)=0, then
levels of the variables must be made arbitrarily, or that
all the coefficients of the model are fixed constants. y ~ N [(X3, V(0)] 3)
Moreover, the mixed model approach also extends the
general linear model on permitting a more flexible spe- whereV(8)=Z G Z’' + R and®@ refers to the variance
cification of the covariance matrix ef Specifically, it components of the matri. The classical model appro-
relaxes the assumptions of homogeneity of the variancesach is a particular case of the mixed model approach.
and independence of the errors. Using matricial nota- WhenR= 02 1 andZ= 0 the two approaches coincide

tion, the mixed model is represented as follows: perfectly.
y=XB+Zu+e (2) Estimation of the parameters, u and V(6) of the
mixed model

where the fixed-effects componeK®, is defined as in
the previous equation and the random-effects compo- The standard procedure for obtaining estimation® of
nent,Zu, allows the definition of different relationships andu, assuming that the matric€&andR are known,
between units, or between subjects in the longitudinal consists in solving the equations of Henderson’s well-

case.Z; is a design matrix of dimensiagl x k for a known mixed model

given second-level unit, or for an individual subject in

the longitudinal casen{ being the number of first-level Fcﬁ-‘ X XR'Z " F] F{f}i-‘ ﬂ

units nested within each second-level unit, or the num- A LA PSR I VR B P

ber of times a subject is observed, &ttle number of ZRXZRZ+G Y ZRy (4)
predictors included). For many models, thgredictors

are a subset of thepredictors included in the matrk, Applying the identities

and the subset of predictors is the same or similar for

each unit or for each subjeztis a second block-diago- RT"-R'"Z(Z'R'2)7Z'R"=(ZG"'Z'+R)”

nal design matrix of the ordex x Jkfor the random
component J being the number of level 2 units, or the
number of subjectsy; is a random-effects parameters
vector of dimensiork X 1associated witlZ;. The vec- the estimators oR andu that solve the equations of
torsuq, Up,..., Uy come together withim, a vector of Henderson’s mixed model are

dimensionJk x "1that contains the specific random-

(G +Z'R'Z)7Z' R =GZ'V(0)" )

effects parameters for all the units, or for all the subjects B=[X'V(@®)'X] XV(@®)y
in the longitudinal case. Finallg is a vector of unk- \ -1 '
) : . a=GZ'V(@® -X'B(0
nown parameters of dimensiarx 1, whose elements, in ©)" Iy B®) (6)
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and( have the properties of being the best unbiased arch design is balanced, we could use algebraic proce-
linear estimator and the best unbiased linear predictor dures based on the method of moments (Searle, Casella
(also referred to as Bayes' empirical estimator or the and McCulloch, 1992). However, the traditional method

shrunken estimator), respectively, dd and u of moments consisting in solving systems of simultane-
(McCulloch and Searle, 2001). In turn, the variances of ous equations, relating the expected values with the
andd are obtained as observed ones, is difficult to accommodate in program
R evaluation, since, in applied contexts, the sampling units
var([})=()'(’\A/(ﬂ)‘1 X) are usually nested in non-balanced groups with arbitra-
var (i) =G -GZ'PZG rily parameterized dispersion matrices. When the rese-
(7 arch design is unbalanced, the components of the matrix
V(0) are estimated iteratively using numerical procedu-
where the projection matrix res. As a general rule, these procedures are based on
maximum-likelihood (ML) estimation techniques, or
P:V(B)‘] -?(B)"X(X'\?’(B)“X)‘X’V(B)‘]. those of restricted maximum likelihood (RML), so as to

avoid obtaining biased estimations. Another procedure
available for estimating the elements of the mati(Q)

If the sample size is small and the design not perfectly is based on the Bayesian approach. Nevertheless, van
balanced, the standard errors corresponding to the fixedder Leeden (1998), points out that the computational
and random effects may be negatively biased. In order toeffort required by this procedure may be considerable
adjust the bias, several solutions have been suggestedwhen the models are complex and the sample sizes of
For example, Kenward and Roger (1997) proposed cal- the levels are large. In addition to the procedures men-
culating the specific inflation factor and adjusting the tioned, PROC MIXED incorporates other methods.
degrees of freedom. Alternatively, Liang and Zeger The ML estimators of are obtained by maximizing
(1986) suggest computing the standard errors for the the natural logarithm of the likelihood function corres-
fixed-effects parameters using an asymptotically consis- ponding to the density of the vectofor 3 and6, where
tent estimator, known as the empirical variance estima-
tor or sandwich estimator. Essentially, the sandwich esti-
mator involves using the observed covariance pattern of
the data, instead of a pattern of covariance selected sta-
tistically. Both procedures are available in the PRCC with e=y - XR If nis small, what may be of interest,
MIXED module of the SAS program (2001, SAS more then estimating the variance components from the

1. (B.8)=—[(nlog 2m)+log| V (8) | +¢'V (8) '] @®)

Institute, version 8.2). A global likelihood, is maximizing the part of the likeliho-
The symbol [I” used in the expressioX'V  (8)= X] od that is invariant of the model’s fixed effects by means

of the equation referring to the fixed effects indicates that of the RML method. Specifically, in accordance with

a generalized inverse is requiredifis not of full rank. Harville’s (1977) derivations, maximizing the likelihood

The vector® contains the unique elements@fand the function logarithm
parameters iR. It can clearly be seen that estimation of
a multilevel model is equivalent to estimation of a mixed
or combined model, since, although separate models can
be formulated for each level, these models are linked sta-
tistically. On observing the equations referring to the esti- Under the normal model, the ML or RML estimators of
matorsf3 andu, it can be appreciated that the estimation 3 and6 are usually determined by means of the Newton-
of the fixed-effects vector depends on the matrix of Raphson (NR) algorithm or the Expectation-
variance components, while the estimation of the random- Maximization (EM) algorithm described by Dempster,
effects vector depends on both the mau{®), and the Laird and Rubin (1977). Nevertheless, there are some
estimator of generalized squared minida reasons for preferring the NR algorithm to the EM.
With very few exceptions, the matric€& andR are According to Lindstrom and Bates (1988), the NR algo-
unknown, which obliges us to determine the variance rithm requires a smaller number of iterations for conver-
components o¥/(08) from the data by means of one of ging than the EM algorithm. Another advantage of the
the different estimation procedures available. If the rese- NR algorithm over the EM resides in the fact that the

L.(p.0)=— ;[(n—h')log(er)+lug|\’(_9) +log| X'V(0) " X|+e'V(8) e] (9)
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former computes the standard errors of the elements of \\ere [|(e)]-1 is the asymptotic covariance matrix

0 from the empirical information matrix (inverse of the  (inyerse of the information matrix) corresponding to the
Hessian matrix with a change of sign). When the EM | (or RML) solution. The Wald statistic, computed by
algorithm is used this matrix is not calculated, and nor, gefault by SAS, is only exact asymptotically (Wolfinger,
therefore, are the standard errors for the elemeris cf 1996), that is, for relatively large samples.

derivatives of the NR algorithm implemented in the  gma)l, caution should be exercised on interpreting the
PROC MIXED module are available in the work of egylts.

Wolfinger, Tobias and Sall (1994). It should be underlined, finally, that when analyzing
_ _ . longitudinal data recorded regularly and consistently
Checking of hypotheses in the mixed model for a small number of subjects, it is usual to fix the

The procedures presented in this section for testing thematrix Z= 0 and model the pattern of covariance that
fixed and random effects and the variance componentsfoiows the matrixR. Obviously, this will also depend
are general. For checking the fixed and random effects, on whether researchers are interested in the global inter-
SAS uses statistical tests based on the distribuians = ceptors and tendencies (fixed effects) or the individual
t, while for testing the variance components, SAS uses gnes (random effects). If the researcher is interested in
Wald's Z statistic. Once the dispersion matrix has been the fixed effects, more than testing a simple covariance
identified and its parameters duly estimatedndu are parameter, the appropriate procedure is to verify whe-
estimated using the procedures defined above and it isther a given pattern of covariance causes a significant
checked whether thie functions to be estimated have improvement with respect to another pattern. When
the value specified in the following null hypotheses: . PROC MIXED is used for discriminating between nes-
For example, the different coefficients corresponding to ted models without changes in the fixed effects, the
the fixed and random effects of the model are checked researcher should use the residual likelihood ratio test;
by calculating the ratio between the ML (or RML) esti- on the other hand, if the aim is to compare nested
mators and their respective standard errors, as follows: models with different fixed effects, the full likelihood
ratio test should be used (see Singer, 2002, for a detai-
, ) led explanation of this topic). For non-nested models,
t(f) = v y t(a)= # selection criteria, such as the Akaike Information
LIXVE) X)L L(G-GZPZOIL (10 Criterion (AIC) or Schwarz’'s Bayesian Information
Criterion (BIC), have usually been adopted (Wallace &
Each one of the hypotheses referring to the fixed and Green, 2002). However, it is also possible to continue
random effects of the model are rejected at laviek >, using the likelihood ratio test if we compare each one of
where is the 1qq_a,22th percentile of the distribution | the models of interest with one that is simpler, but nes-
t with n degrees of freedom. When the data are not ted simultaneously in the two of them, and select the
balanced, as is usually the case, and the number of levelmodel that offers the greatest improvement (Brown and
2 units is small, the above test may offer liberal resulis. Prescott, 1999).
With a view to solving this problem, SAS provides the
possibility of using the options DDFM= SATTERTH o POWER ANALYSIS FOR DETECTING THE

DDFM= KENWARDROGER for adjusting n. EFFECTS OF A MULTI-LEVEL DESIGN
In turn, the null hypotheses corresponding to the More and more researchers consider it useful to know
variance component&(andG) are of the form Iy: 6= the probability that an impact of a given size will be sta-

0. In order to test this type of hypothesis, SAS provides tistically significant. Thus, methods aimed at detecting
Wald'’s Z statistic. This statistic is obtained by dividing optimum sample sizes, differences between treatments
each one of the parameters estimated via ML (or RML) and test power (henceforth referred to as power analysis)

by its corresponding standard error: are essential to the process of planning research.
However, the relatively widespread belief that the infor-
0 mation required for carrying out a power analysis is dif-
- ey ficult to obtain, and that merely conjectural work is
(11) irresponsible, has led to power analysis being largely
neglected.
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For this reason, it is not unusual to come across studiesRaudenbush and Liu (2000). Specifically, we shall use a
with inadequate sample sizes, most frequently in the form standardized model combining small (0.3), medium
of insufficient numbers of participants. As is well known, (0.5) and large (0.70) measures of effect size, variances
the use of small sample sizes involves the risk of uncue within the groups equal to unit and variances across the
acceptance of null hypotheses, when they are in fact falsegroups equal to the square of the standardized effect
in that population. In these cases we say that the designsizes we have just specified.
lacks testing power, as there is a high probability of
accepting the model of chance as the most plausiblelllustration of how to obtain sample sizes
explanation of the differences found. Thus, a key issue for For the design referred to in the previous section, the
research design is the correct choice of sample size. model can be formulated in scalar terms as follows:

Power analysis is useful boshpriori anda posteriori
However, in our view, when it is crucial is before carr- Yijkl = HHaj+ Byt M@y + Bkl + &kl
ying out the research. And while we agree that inade- 1
guate work on power may lead to disappointment, we
also firmly believe that detailed analysis of the factors where the observed value of th@ Bubject nested
that determine power gives researchers the capacity towithin the }h condition and of the R group in the I
design better studies. We coincide with D’Amica, time (Miik|) is expressed as a function of the general
Neilands, and Zambarano (2001) in their assertion that measure (), of the effect of thd freatment condition
rigorousa priori analysis of power makes it possible to  (a:), of the random effect of thélkgroup nested within
verify whether the effort, time and cost required by the condition j Bk(j))' of the effect of thdl time (), of the
research design are fully justified. combined effect of thel] condition and thel time

As illustrated through the examples mentioned earlier, ((ay);), of the random combination of thgh|group and
there are a variety of research areas in which treatmentshe i"] time and of the random variation among the

are administered to groups of people, rather than indivi- group memberse Kh)-

duals. Moreover, in the majority of cases group mem-  Alternatively, Equation 12 can be rewritten in terms of
bers have not been assigned to their groups in accordang multilevel model. To do so, we begin by writing at the

ce with the rules of chance. In the best of cases intactfirst level a model similar to that of classical regression,
groups are assigned at random to the treatment condi-incorporating time as explanatory variable

tions. Consequently, in these circumstances it is neces-

sary to determine precisely the size of the units of obser- yii= b + by Ti + &, (13)

vation and assignment in order to detect differences bet- ) ) 1 )

ween treatments and interactions, or the moderating where y; denotes the score of tH8 subject in thel]’
effects of the characteristics of subjects and/or groups ongroup, the interceptor,gh is equal to the mean of the
variability of impact, since the units of assignment used groupj, the slope, p;, represents average change on the
in such cases are not subjects, but groups. Furthermorepost-test associated with a unit of change in the pre-test
as the resources involves in sampling the two types of ang e denotes the difference between the score of the
units differ substantially, sample sizes should be deter- ijth subject and the mean of tHB group. For the sake
mined not only according to the effect size of interest of simplicity, we assume that the error follows a normal
and the variations within and across groups, but also in gistribution with mean zero and constant variance across
line with the costs involved in detecting such effects. | he groups, that is, .

In the remainder of this work we shallillustrate how t0 Next, we incorporate the hierarchical nature of the data
determine optimum sample sizes in order to show the jntq the model. To do so we shall consider the regression
main effect of the intervention and of its interaction with  yefficients I@j and b.Lj as dependent variables that fluc-
time in a hierarchical random-groups design with pre- ate across the groups as a function of one mean plus

test and post-test. It can clearly be seen by means of thgpe reatment and the error. Specifically, the regression
procedure we shall use that this design is uniformly cqefficients are related to the treatment as follows:
superior for detecting differences between treatments to

the standard hierarchical random-groups design. In b= + Trat + un:
order to achieve the objectives set we shall follow a pro- 0] Poo* Po1 §+ o
cedure similar to that presented by Cohen (1988) and byj=B1o+BraTrag +uy  (14)
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In the level 2 models it is assumed that in each group In the case of the main effect of the treatment, a valid
the parametersd?and by are distributed normally with | test of is provided by the statistical test
means and , respectively, and matrix of variances-cova-

riances _ EBq)
Bu E(flqi) (17)
G_[xjar(ﬁmﬁ cnv(ﬁrou.ﬁma}_rar.(uoﬂ cm’(uﬂoj-uﬂ_[mm |
€V BuasProd - varBro) ] eovonn) v [ Low on g gy When the hypothesis tested is true, the distribution of

the F statistic is approximated by means of a central F

It is also assumed that the errors corresponding |to distribution with and degrees of freedom for the nume-

levels 1 and 2 are independent of one another, that is, rator and denominator, respectively. In the case of inter-

Substituting the expressions corresponding to Equation action, the F test is constructed in a similar way, specifi-
15 in Equation 14, we obtain the following mixed cally

model:
e _EGw)
Yij= Boo * Bo1 Traf + ugj + B1o Tjj + B12 Tjj Trag + uj Tjj + §; b T E@,)
16 1 (18)
where i denotes the score of tHE subject in thet]‘ with Bpq and By 1 defined as in (22) and (26).

group, represents the value resulting from averaging If is true, the F statistic follows a central F distribution
the means of the groups, represents the difference ofwith and degrees of freedom for the numerator and
means in the response of interest between the groupsdenominator, respectively.

receiving treatment and those that do ngf,indicates However, under an alternative hypothesiggfand
whether there are differences between the means of theF1 1 follow a non-central F distribution with the speci-
groups in the dependent variable controlling the effect fied degrees of freedom and the following non-centrality
of the treatment, represents theerage difference | parameters:

between pre-test and post-tgsfs represents the mean

difference in the pre-test/post-test relationship between nQrp;,
the groups receiving treatment and the control groups, Mg, = 4(c2 +nroy)
. . . . # 00
uj; indicates whether the relationship between the pre- (19)
test and post-test within the group varies across the
groups when the effect of the treatment is kept coris- nQ Bli]
tant, and g denotes the difference between the score of A‘ﬁ” '

:2—
the ifi" subject and the mean of th® jgroup. The 8(c; +n o)

coding system assumed is as follows: 1 for the cons-
tant, |0.5] for the treatment and time, and |0.25| for their Having specified the non-centrality parameters, selec-
interaction. ted the statistical test and determined the distribution,
we can obtain the power corresponding to the fixed
Determination of sample size without considering the effects of the design by calculating the probability that a
costs of the research non-central F with degrees of freedom and and non-
Apart from specifying the form and magnitude of the centrality parameter for exceeds the corresponding cri-
effect of the design, three other aspects are of key inte-tical value (Muller, La Vange Ramey & Ramey, 1992).

(20)

rest in a power analysis (see also Murray, 1998): Formally
a. Selecting a statistical test for evaluating the effects of
the design. Power= 1 Prob[F(vq, vo; A)< Finv(1 -a, wq, wo)]
b. Determining the distribution of the statistical test (22)
selected.

c. Developing the non-centrality parameters of the where represents the critical value obtained from the
effects of interest, together with their corresponding inverse central F distribution function. The power values
variances. can be revealed by using appropriate computational rou-
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tines. For example, the following expressions from the By way of illustration, Table 1 shows the power obtai-
SAS program can be used to obtain the power corras-ned for different values of n, Q, effect sizes and varian-
ponding to the effects of the random-groups hierarchical ces across the groups.

design with pre-test and post-test:

Power ;, =1-Prob f (Finv(1-alpha,v,,v,),v,,v,,4, )

Power ;, =1-Prob f (Finv(l-alpha, (v,,v,),v,,v,,4; )

A v ) e s o BN o~ A A A © LI B - o £ e — e A I i < — i )~ i\ s © v w v S e w v S S S© g S B o- Al © £ v A

Table 1
Power for the main effect of the treatment without
taking cost into account

Q N 0y d Power Q Power Q  Power

20 20 015 0.2 0.299 30 0432 40 0.54
20 20 015 03 0.574 30 0.765 40 0.87
20 20 015 04 0.816 30 0947 40 0.98
20 20 010 0.2 0.395 30 0562 40 0.69
20 20 010 03 0.718 30 0.887 40 0.95
20 20 010 04 0.922 30 0988 40 0.99
20 20 0.05 0.2 0.589 30 0779 40 0.88
20 20 0.05 03 0.906 30 0984 40 0.99
20 20 005 04 0.992 30 1.000 40 1.00
20 30 015 0.2 0.311 30 0449 40 0.57
20 30 015 0.3 0.594 30 0.784 40 0.89
20 30 015 04 0.834 30 0956 40 0.99
20 30 010 0.2 0.418 30 0591 40 0.72
20 30 010 03 0.748 30 0.907 40 0.96
20 30 010 04 0.938 30 0992 40 0.99
20 30 0.05 0.2 0.640 30 0825 40 0.92
20 30 0.05 03 0.935 30 0991 40 0.99
20 30 005 04 0.996 30 1.000 40 1.00
20 40 015 0.2 0.318 30 0458 40 0.58
20 40 015 03 0.605 30 0.795 40 0.90
20 40 015 04 0.843 30 0960 40 0.99
20 40 010 0.2 0.431 30 0.606 40 0.73
20 40 010 03 0.763 30 0917 40 0.97
20 40 010 04 0.946 30 0994 40 0.99
20 40 0.05 02 0.668 30 0849 40 0.93
20 40 005 03 0.948 30 0994 40 0.99
20 40 005 04 0.998 30 1.000 40 1.00
20 50 015 0.2 0.322 30 0464 40 0.58
20 50 015 0.3 0.612 30 0.801 40 0.90
20 50 015 04 0.848 30 0962 40 0.99
20 50 010 0.2 0.439 30 0616 40 0.74
20 50 0.10 03 0.772 30 0922 40 0.97
20 50 0.10 04 0.950 30 0995 40 1.00
20 50 0.05 0.2 0.685 30 0.863 40 0.94
20 50 0.05 03 0.955 30 0.996 40 1.00
20 50 0.05 04 0.998 30 1.000 40 1.00

Note: Q = number of groups; N= members within the grou;p,OS;mgz
Variance due to the groups + variance due to the interactigr 0.10

The results in Table 1 suggest the appropriateness of
planning the design with a larger number of groups than
of members in each group, especially when the impact
size postulated is small and the variance of treatments
across groups is large. However, from an economic
point of view, this conclusion may be unrealistic, since,
as a general rule, sampling of groups is more costly than
sampling of group members. Thus, it is important to
carry out the power analysis considering also the costs
involved in the sampling process.

Determination of sample size according to sampling

costs

In order to carry out this analysis we need to know the
variance of the effects of the design. Following a proce-
dure similar to that described by Murray (1998) and

Raudenbush and Liu (2000), the standard error of the
main effect

can be easily obtained if we express the variance of the
group mean based andependent observations and
repeated measures as

[

(23)

and the variance of the treatment condition j based on
g groups of the same size

2
GF

o, =| —+®, |/q
nr

(24)

Thus, assuming that the variances are homogeneous
across the groups, we have

Var(Bm)= 4(c? +nr@y,)
L (25)
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Operating in the same way, we find that the variance And, on the other, to discover the valuenghat mini-
corresponding to the interaction effect mizes the variances of Equations 29 and 30. Deriving
with respect ta, we find (see Appendix)

Bll =(?Fn _VFA)_(V("D _V(".A) 0-2 C 2
(26) n. (optimum=|—-—=
b w..C
gives 0 (31)
. 2 d
Var (B, ):—8(0S +(;10)“) "
n
27) 52 C 1/2

From Equations 25 and 27 it can be appreciated that nf?n (optzmum):

both the number of groups and the number of members
in each group affect the accuracy of the estimations.
However, lack of statistical accuracy will be greater We would have obtained identical values by maximi-
when Q is reduced that wheris reduced. Thus, given  zing the non-centrality parameters of Equations 19 and
that the units of assignment affect the sensitivity of the 20 with respect to.
design more than the units of observation, researchers Assuming that the relative cost between C2/C1 is esti-
should negotiate carefully, according to their costs, the mated at 2, 6, 8 and 10, Table 2 shows the values®f
sizes of Q ana they include in the study for obtaining and power, for diverse effect sizes, variances across
appropriate power. groups and cost ratios.

In accordance with Cochran (1977), in many two-stage With regard to the results in Table 2, four aspects are
sampling designs the cost involved in collecting data can worthy of mention. First, keeping effect size and varian-

a)llcl (32)

be approximated by an expression of the form Ce across groups constant, power increases as the ratio of
costs decreases. Secondly, medium and large effects
C=CnQ + GQ (28) produce powers that approach the value considered

ideal. However, it can also be seen that when treatment

where C refers to the total cost of the study, C1 to the groups are separated by 0.2 standard units, variances
cost involved in sampling the members within each one lower than 0.10 will be required to provide powers that

of the groups and C2 the cost associated with each onedetect the treatment effect, at least in 50% of cases, since

of the groups. power increases as variance decreases. Third, the more
Having determined the total cost of the study, the rese- costly it is to sample the groups in relation to the num-
archer is in a position to select the valuen dfiat mini- ber of members making up the group, the greater the size

mizes the variance of the design’s effects. For this, just of nand the smaller that of Q. Finally, it should be stres-

two simple operations are necessary. On the one hand, tesed that detection of the interaction effect requires larger

express the variances of the effects of the design takingsample sizes than detection of the main effect.

into account the costs of the study Nevertheless, from the qualitative point of view it can be
seen how the power functions of the main effect and
interaction effect are identical.

4(c’ +nro,, ) (nC, +C,)
nrC

CONCLUSIONS
(29) The derivations presented in the present work show that
the general linear model cannot be used to estimate the
and parameters of the mixed model in Equation 2, since the
ordinary squared minima procedure assumes that the
8(c2 +nw,,) (nC, +C,) errors are independent, with a mean of zero and constant
C variance. However, in a model such as that of Equation
’ (30) 2 there are multiple sources of random variance, the

Var (E‘m):

Var B,,)=
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errors are not necessarily independent and the variarice®f random variation, which are duly estimated and inter-
can differ among one another. In these cases neither/thepreted by means of the mixed model approach.
general nor the generalized linear model are appropria- Moreover, if there is dependence between the first-level
te. The natural solution to the problems indicated is pro- units. nested within the second-level u_nits,' this is obtgi-
vided by the general linear mixed model if the probabi- "€d independently of the error by estimating the varia-
lity distribution of the response variable does not devia- tion in _the second-level _unlts induced by the grouping
te from normality, or the generalized linear mixed model (Carvajal, Baumler, Harist & Porcel, 2001).

. _ The present study also shows, for the hierarchical
if the data follow any other member of the exponential design of groups at random with pre-test and post-test

family of distributions. For example, if we focus on thz (one of the most commonly-used designs, according to
model in Equation 16, we can see identify three sources murray [1998], in the evaluation of prevention programs
based on organizations) how to maximize power for

Table 2 G - :
Power for effect of treatment and interaction as a function of costg hlgh“ghtmg the_ effec_ts of treatments by selectlng opti-
mum sample sizes, in terms of both number of groups
Co/Cy VAR ES N(T) Q(T) POWER(T) N(@) Q) POWER() and their size. Although for achieving this aim we have
2 16 .1 3 100 0232 4 83  0.169 used, like Raudenbush and Liu (2000), a standardized
2 16 .3 3 100 0865 4 83 0700 model, there will be plenty of cases in which researchers
2 164 3 100 0998 4 83 0978 are able to anticipate the value of the variance compo-
2 06 1 4 83 0312 6 63 0211 d the eff . ing data f :
5 06 3 4 8 0957 6 63 0822 nents and t e e ect size using data from some previous
2 06 4 4 83  1.000 6 63  0.996 study or a pilot study. In any case, the results presented
2 01 1 10 42 0447 14 31 0.266 in the tables show quite clearly some of the guidelines
2 0 3 10 4 09 14 31 0915 for researchers using this type of design in the planning
E '22 "1‘ 140 gé é'ggg 164 43; ;'fgg of their work, with a view to obtaining sufficient statis-
5 16 3 4 56 0682 6 45 0527 tical power. Maintaining design, type of _anaIyS|s and
5 16 .4 4 56 0973 6 45  0.901 number of replications constant, statistical accuracy
5 06 1 6 45 0229 9 36 0.168 would probably be improved by the inclusion of some
5 06 .3 6 45 089 9 36 0696 auxiliary variable and using more rounds of observa-
5 06 .4 6 45  0.998 9 36  0.977 tions
5 01 .1 16 24 0371 22 19 0235 o . o
5 01 3 16 24 0983 22 19  0.869 Finally, we should bear in mind some of the limitations
5 .01 .4 16 24 1.000 22 19  0.998 of the present work. Specifically, all the derivations refer
10 16 1 6 31 0121 8 28 0104 to the power analysis for a relatively simple design with
- 16 .3 6 3 0488 8 28 039 two experimental conditions (treatment and compari-
10 16 4 6 31 0870 8 28 0.770 i which i d that the d q :
10 6 1 9 26 0172 13 22 04135 son), in w icl it was assume that the dependent varia-
10 06 3 9 26 0711 13 22 0561 ble was continuous, with regularly-recorded data, balan-
10 06 4 9 26 0981 13 22 0922 ced groups and no lost observations. Although it lies
10 01 1 22 16 0308 32 12 0194 outside the brief of this work to extend the derivations
18 '81 'i ;i 12 2'235 g; 1; g'ggi found to more real situations, such as non-balanced
0 16 1 8 18 0092 11 16  0.082 designs, it would not be much more complicated to do
20 16 3 8 18 0321 11 16  0.260 So.
20 16 4 8 18 0666 11 16 0557
20 .06 1 13 15 0.126 18 13 0.104 ACKNOWLEDGEMENTS
20 06 3 13 15 0514 18 13  0.395 . . .
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Note: G/Cq= ratio of costs; VAR= variance of impact across groyps; TeChnOIOQy (MCT) (Ref': BOS'2000-0410)'
ES=standardized effect size; N(T)= value of n required for main effect;
Q(T)= number of groups required for main effect; POWER (T)= fest APPENDIX
power corresponding to main effect; N(I)= value of n required for|the ) e . .
interaction; Q(I)= number of groups required for the interaction; POWER D|fferent|at|ng the with respect to and equallmg to
(I)= test power corresponding to the interaction zero. we have:
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