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The data from many research designs based on pro-
gram evaluation have a structure very similar to that

observed in cluster sampling designs with two or more
stages. In the simplest case, the researcher initially selects
a random sample of clusters or primary sampling units,
and then randomly selects the secondary sampling units
within each of the clusters. The primary units can be scho-
ols, classes, clinics or any other type of entity, and the
secondary units, teachers nested within schools, students
nested within classes or patients nested within clinics.
In all the cases mentioned above, collective units of

analysis, more than individual units of analysis, consti-
tute the observational reference to which the treatment
or social intervention program is directed. When resear-
chers use collective units of analysis for reasons of
logistics, political viability or ecological validity, or for

any other reason, what they usually do is randomly
assign some units configured prior to the intervention to
the treatment condition and others to the control condi-
tion. A researcher who has proceeded in line with the
above will rarely select at random individual units of the
primary sampling units to then assign them at random to
the program. In any case, even though it were possible
to assign people within the groupings to the program, it
does not appear to be a desirable option, due, among
other reasons, to the probable diffusion of treatments. It
is more frequent for the researcher to create the problem
of the unit of analysis, administering the treatment
collectively to units originally assigned to the groups on
an individual basis. Researchers should therefore proce-
ed with caution in these matters. It is clearly not the
same to assign collective units at random to the preven-
tion program as it is to do so individually. Such confu-
sion not only restricts the researcher’s ability to unders-
tand the research design employed, but may also invali-
date the use of techniques based on the general or gene-
ralized linear model for evaluating the consequences of
a program’s application.

The original Spanish version of this paper has been previously
published in Psicothema, 2003,  Vol. 15. No 2, 300-308
...........
Correspondence concerning this article should be addressed to
Guillermo Vallejo Seco, Facultad de Psicología, Universidad de
Oviedo, 33003 Oviedo Spain. E-mail: gvallejo@correo.uniovi.es

Copyright 2004 by the 
Colegio Oficial de Psicólogos. Spain

Psychology in Spain, 2004, Vol. 8. No 1, 77-88

La evaluación de programas de prevención acarrea errores de decisión derivados principalmente de la dificultad de asig-
nar al azar las unidades individuales a las condiciones de investigación. La elección de la unidad de análisis apropiada a
la hora de evaluar la efectividad del impacto está determinada por la naturaleza de la intervención y por el diseño de inves-
tigación seleccionado. Cuando las unidades de asignación y de observación difieren entre sí, esto es, cuando entidades
colectivas más que individuales son asignadas al azar a los tratamientos, los análisis realizados en los niveles más bajos
de la jerarquía proporcionan estimaciones ineficientes de los parámetros y a menudo conducen a que las pruebas de sig-
nificación sean inadecuadas. La meta de este trabajo es doble. Por un lado, presentar un método analítico que permite uti-
lizar los datos de cualquier nivel del diseño sin inflar las tasas de error. Y, por otro lado, determinar el número de grupos
y el tamaño de éstos en función de la variabilidad existente y de los costos.  

Statistical analysis and considerations of power in program evaluation using two-stage sampling designs. Evaluation of
prevention programs involves decision errors due to the difficulty of randomly assigning individuals to research conditions.
The nature of the intervention and design of the study determine the choice of the appropriate unit of analysis in impact
assessments. When units of assignment and units of observation differ, that is, when clusters of people rather individuals
are assigned at random to treatments, the analyses conducted at lower levels of the study hierarchy provide inefficient para-
meter estimates, and often result in inappropriate significance tests. Therefore, the purpose of this paper is (a) to present
an analytical method that permits the use of data at all levels of design without increasing Type I error rates, and (b) to
determine the number of clusters and the sample size per group according to variability and cost.
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The application of the techniques based on the models
mentioned requires the satisfaction of certain assump-
tions, particularly that of independence between obser-
vations. When groups constitute the unit of analysis, it is
reasonable to think that the specific characteristics of the
groups are reflected in the data, since observations that
are close in time, space or both dimensions at the same
time tend to be more homogeneous than observations
that are farther apart. It is highly probable that the data
drawn from natural groupings such as towns, health
communities or schools bear a certain similarity to each
other, since they are exposed to common influences. For
example, the pupils in a class talk to each other all the
time, share the same types of experiences and are subject
to the same educational factors. Thus, as Shadish, Cook
and Campbell (2002) point out, the observations recor-
ded from each unit will reflect both the effects of the
individuality itself on the behaviour and the effects of
the collective variables on the individuals. The former
effects will vary within the collective units and across
them, while the latter effects will vary only among the
different collective units. An indicator of the portion of
total variability attributable to the unit of assignment is
obtained by means of the intra-class correlation coeffi-
cient.
Given that the members of a collective unit tend to be

more similar than those that are not part of such a unit,
a set of correlated observations provides less informa-
tion than a similar number of independent observations.
Thus, when statistical models that assume independence
between the units are applied to correlated data, there is
an underestimation of standard errors of measurement
(Carvajal, Baumler, Harrist & Parcel, 2001). In practice,
this means that both tests based on the classical linear
model and those based on the generalized linear model
substantially increase the probability of rejecting the
null hypothesis when it is in fact true, and thus of lea-
ding us to conclude that a program is effective when it is
noncommittal actually totally ineffective. In sum, it
leads to researchers capitalizing on chance more fre-
quently than they should due to inefficient estimations
(Rinndskopf & Saxe, 1998).
In addition to non-fulfilment of the assumption of inde-

pendence, when the data are organized hierarchically
there is more than one source of random variance in
them. Thus, neither techniques based on the general
linear model nor those based on the generalized linear
model are appropriate, since, in all cases, they only
allow us to determine the variation of a single compo-
nent. If the data follow a normal distribution, the natural

solution is provided by the linear mixed models, also
known as random-effects models, random components
models, multilevel linear models, hierarchical models or
mixed-effects regression models (Goldstein, 1995,
Aitkin & Longford, 1986; Laird & Ware, 1982;
Raudenbush & Bryk, 2002, Oliver, Rosel & Jara, 2000).
If, on the other hand, the data follow any other member
of the exponential family, the natural solution is provi-
ded by the generalized mixed models (Breslow &
Clayton, 1993; Wolfinger & O’Connell, 1993). All of
these models recognize the nested structure of the data
and allow estimation of the variances occurring in the
different strata produced by the grouping, in both trans-
versal and longitudinal studies.
In the sections below we offer a brief introduction to

the general linear mixed model, we describe the estima-
tion techniques and we specify the inference procedures
for checking the hypotheses corresponding to the fixed
effects and random effects of the model and the varian-
ce components. Finally, we use a randomized-groups
hierarchical design with pre-test and post-test to illustra-
te how to determine optimum sample sizes for determi-
ning, in turn, the effects of the design. As Raudenbush
(1997) points out, even though these models are particu-
larly attractive, they tend arouse a degree of mistrust
among researchers in view of their relative analytical
complexity and possible lack of statistical accuracy cau-
sed by incorrect selection of the size of sampling units.

The general linear mixed model
The standard linear model for explaining n observations
taken for each one of the p covariants (predictors) and/or
factors (independent variables) can be written as

y= Xß + e         (1)

where y is a vector of dimension n x 1 containing the
values of the response variable yij for unit i in group j (or
for subject i in time j), X is a design matrix of dimension
n x p that specifies the fixed-effects values corresponding
to each parameter for each one of the observations (vec-
tors of zeroes and ones denote the absence and presence
of categorical effects for variables without metric structu-
re, while numerical vectors denote the effects of the varia-
bles measured on a quantitative scale), ß is a vector of
non-random parameters estimated from the data that may
include variables of various types, and e is a vector of
unknown errors of dimension n x 1 distributed normally
and independently with a mean of zero and constant
variance. The coefficients of the vector ß are fixed-effects
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parameters that describe the average behaviour of the
population. However, it may occur that not all the terms
of the model take constant values in the successive repe-
titions of the study, and that, rather, some are seen as the
result of extracting samples at random from a normal dis-
tribution (random-effects models). Moreover, if the
design matrix includes covariants, it is also possible that
the parameters of vector ß do not represent correctly the
relationship between X and y for some subjects or groups.
Consequently, it is necessary to employ an approach that
permits the researcher to establish a global relationship
between the variables for all the subjects and to model
separate relationships that vary randomly among the sub-
jects (random-coefficients models).
The linear mixed model provides the appropriate solu-

tion for dealing with the problem in question, since it
does not require the assumption that selection of the
levels of the variables must be made arbitrarily, or that
all the coefficients of the model are fixed constants.
Moreover, the mixed model approach also extends the
general linear model on permitting a more flexible spe-
cification of the covariance matrix of e. Specifically, it
relaxes the assumptions of homogeneity of the variances
and independence of the errors. Using matricial nota-
tion, the mixed model is represented as follows:

y= Xß + Z u + e            (2)

where the fixed-effects component, Xß, is defined as in
the previous equation and the random-effects compo-
nent, Zu, allows the definition of different relationships
between units, or between subjects in the longitudinal
case. Zj is a design matrix of dimension nj x k for a
given second-level unit, or for an individual subject in
the longitudinal case (nj being the number of first-level
units nested within each second-level unit, or the num-
ber of times a subject is observed, and k the number of
predictors included). For many models, the k predictors
are a subset of the p predictors included in the matrix X,
and the subset of predictors is the same or similar for
each unit or for each subject. Z is a second block-diago-
nal design matrix of the order nj x Jk for the random
component (J being the number of level 2 units, or the
number of subjects). uj is a random-effects parameters
vector of dimension k x 1 associated with Zj. The vec-
tors u1, u2,…, uj come together within u, a vector of
dimension Jk x 1 that contains the specific random-
effects parameters for all the units, or for all the subjects
in the longitudinal case. Finally, e is a vector of unk-
nown parameters of dimension n x 1, whose elements, in

contrast to the case of the classical model, do not need to
be independent or homogeneous.
The distributional assumptions of the model imply that

the residual coefficients u are distributed normally and
independently, with mean 0 and covariance matrix G,
where G is a block-diagonal matrix of dimension Jk x
Jk, with each block Gj of dimension k x k containing the
variances and covariances of the random effects for each
one of the second-level units, or for each one of the sub-
jects where repeated measures are used. It is also assu-
med that the error vector e, as well as being independent
of the vector u, is distributed normally with mean 0 and
covariance matrix R, where R is a block-diagonal matrix
of the order n x n, with each block Ri containing the
variances and covariances of the errors within the sub-
jects. If it is fulfilled that e ~ N (0, R), u ~ N (0,G) and
cov (r , u)= 0, then 

y ~ N [(Xß, V(θ)]            (3)

where V(θ)= Z G Z’ + R and θ refers to the variance
components of the matrix V. The classical model appro-
ach is a particular case of the mixed model approach.
When R= σ2 I and Z= 0 the two approaches coincide
perfectly.

Estimation of the parameters ß, u and V(θ) of the
mixed model

The standard procedure for obtaining estimations of ß
and u, assuming that the matrices G and R are known,
consists in solving the equations of Henderson’s well-
known mixed model 

(4)

Applying the identities

(5)

the estimators of ß and u that solve the equations of
Henderson’s mixed model are

(6)
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and û have the properties of being the best unbiased
linear estimator and the best unbiased linear predictor
(also referred to as Bayes’ empirical estimator or the
shrunken estimator), respectively, of ß and u
(McCulloch and Searle, 2001). In turn, the variances of
and û are obtained as

(7)

where the projection matrix

If the sample size is small and the design not perfectly
balanced, the standard errors corresponding to the fixed
and random effects may be negatively biased. In order to
adjust the bias, several solutions have been suggested.
For example, Kenward and Roger (1997) proposed cal-
culating the specific inflation factor and adjusting the
degrees of freedom. Alternatively, Liang and Zeger
(1986) suggest computing the standard errors for the
fixed-effects parameters using an asymptotically consis-
tent estimator, known as the empirical variance estima-
tor or sandwich estimator. Essentially, the sandwich esti-
mator involves using the observed covariance pattern of
the data, instead of a pattern of covariance selected sta-
tistically. Both procedures are available in the PROC
MIXED module of the SAS program (2001, SAS
Institute, version 8.2).
The symbol (⋅)− used in the expression [X’V ^ (θ)= X]

of the equation referring to the fixed effects indicates that
a generalized inverse is required if X is not of full rank.
The vector θ contains the unique elements of G and the
parameters in R. It can clearly be seen that estimation of
a multilevel model is equivalent to estimation of a mixed
or combined model, since, although separate models can
be formulated for each level, these models are linked sta-
tistically. On observing the equations referring to the esti-
mators ß and u, it can be appreciated that the estimation
of the fixed-effects vector depends on the matrix of
variance components, while the estimation of the random-
effects vector depends on both the matrix V(θ), and the
estimator of generalized squared minima ß.
With very few exceptions, the matrices G and R are

unknown, which obliges us to determine the variance
components of V(θ) from the data by means of one of
the different estimation procedures available. If the rese-

arch design is balanced, we could use algebraic proce-
dures based on the method of moments (Searle, Casella
and McCulloch, 1992). However, the traditional method
of moments consisting in solving systems of simultane-
ous equations, relating the expected values with the
observed ones, is difficult to accommodate in program
evaluation, since, in applied contexts, the sampling units
are usually nested in non-balanced groups with arbitra-
rily parameterized dispersion matrices. When the rese-
arch design is unbalanced, the components of the matrix
V(θ) are estimated iteratively using numerical procedu-
res. As a general rule, these procedures are based on
maximum-likelihood (ML) estimation techniques, or
those of restricted maximum likelihood (RML), so as to
avoid obtaining biased estimations. Another procedure
available for estimating the elements of the matrix V(θ)
is based on the Bayesian approach. Nevertheless, van
der Leeden (1998), points out that the computational
effort required by this procedure may be considerable
when the models are complex and the sample sizes of
the levels are large. In addition to the procedures men-
tioned, PROC MIXED incorporates other methods.
The ML estimators of θ are obtained by maximizing

the natural logarithm of the likelihood function corres-
ponding to the density of the vector y for ß and θ, where

(8)

with e= y - Xß. If n is small, what may be of interest,
more then estimating the variance components from the
global likelihood, is maximizing the part of the likeliho-
od that is invariant of the model’s fixed effects by means
of the RML method. Specifically, in accordance with
Harville’s (1977) derivations, maximizing the likelihood
function logarithm

(9)

Under the normal model, the ML or RML estimators of
ß and θ are usually determined by means of the Newton-
Raphson (NR) algorithm or the Expectation-
Maximization (EM) algorithm described by Dempster,
Laird and Rubin (1977). Nevertheless, there are some
reasons for preferring the NR algorithm to the EM.
According to Lindstrom and Bates (1988), the NR algo-
rithm requires a smaller number of iterations for conver-
ging than the EM algorithm. Another advantage of the
NR algorithm over the EM resides in the fact that the
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former computes the standard errors of the elements of
θ from the empirical information matrix (inverse of the
Hessian matrix with a change of sign). When the EM
algorithm is used this matrix is not calculated, and nor,
therefore, are the standard errors for the elements of θ
(Jennrich & Schluchter, 1986). Details of the matricial
derivatives of the NR algorithm implemented in the
PROC MIXED module are available in the work of
Wolfinger, Tobias and Sall (1994).

Checking of hypotheses in the mixed model
The procedures presented in this section for testing the
fixed and random effects and the variance components
are general. For checking the fixed and random effects,
SAS uses statistical tests based on the distributions F or
t, while for testing the variance components, SAS uses
Wald’s Z statistic. Once the dispersion matrix has been
identified and its parameters duly estimated, ß and u are
estimated using the procedures defined above and it is
checked whether the h functions to be estimated have
the value specified in the following null hypotheses: .
For example, the different coefficients corresponding to
the fixed and random effects of the model are checked
by calculating the ratio between the ML (or RML) esti-
mators and their respective standard errors, as follows:

(10)

Each one of the hypotheses referring to the fixed and
random effects of the model are rejected at level α if t >,
where  is the 100(1-α/2)

th percentile of the distribution
t with n degrees of freedom. When the data are not
balanced, as is usually the case, and the number of level
2 units is small, the above test may offer liberal results.
With a view to solving this problem, SAS provides the
possibility of using the options DDFM= SATTERTH or
DDFM= KENWARDROGER for adjusting n.
In turn, the null hypotheses corresponding to the

variance components (R and G) are of the form H0: θ=
0. In order to test this type of hypothesis, SAS provides
Wald’s Z statistic. This statistic is obtained by dividing
each one of the parameters estimated via ML (or RML)
by its corresponding standard error:

(11)

where [I( θ)]-1 is the asymptotic covariance matrix
(inverse of the information matrix) corresponding to the
ML (or RML) solution. The Wald statistic, computed by
default by SAS, is only exact asymptotically (Wolfinger,
1996), that is, for relatively large samples.
Consequently, when the number of second-level units is
small, caution should be exercised on interpreting the
results.
It should be underlined, finally, that when analyzing

longitudinal data recorded regularly and consistently
for a small number of subjects, it is usual to fix the
matrix Z= 0 and model the pattern of covariance that
follows the matrix R. Obviously, this will also depend
on whether researchers are interested in the global inter-
ceptors and tendencies (fixed effects) or the individual
ones (random effects). If the researcher is interested in
the fixed effects, more than testing a simple covariance
parameter, the appropriate procedure is to verify whe-
ther a given pattern of covariance causes a significant
improvement with respect to another pattern. When
PROC MIXED is used for discriminating between nes-
ted models without changes in the fixed effects, the
researcher should use the residual likelihood ratio test;
on the other hand, if the aim is to compare nested
models with different fixed effects, the full likelihood
ratio test should be used (see Singer, 2002, for a detai-
led explanation of this topic). For non-nested models,
selection criteria, such as the Akaike Information
Criterion (AIC) or Schwarz’s Bayesian Information
Criterion (BIC), have usually been adopted (Wallace &
Green, 2002). However, it is also possible to continue
using the likelihood ratio test if we compare each one of
the models of interest with one that is simpler, but nes-
ted simultaneously in the two of them, and select the
model that offers the greatest improvement (Brown and
Prescott, 1999).

POWER ANALYSIS FOR DETECTING THE
EFFECTS OF A MULTI-LEVEL DESIGN
More and more researchers consider it useful to know
the probability that an impact of a given size will be sta-
tistically significant. Thus, methods aimed at detecting
optimum sample sizes, differences between treatments
and test power (henceforth referred to as power analysis)
are essential to the process of planning research.
However, the relatively widespread belief that the infor-
mation required for carrying out a power analysis is dif-
ficult to obtain, and that merely conjectural work is
irresponsible, has led to power analysis being largely
neglected.
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For this reason, it is not unusual to come across studies
with inadequate sample sizes, most frequently in the form
of insufficient numbers of participants. As is well known,
the use of small sample sizes involves the risk of undue
acceptance of null hypotheses, when they are in fact false
in that population. In these cases we say that the design
lacks testing power, as there is a high probability of
accepting the model of chance as the most plausible
explanation of the differences found. Thus, a key issue for
research design is the correct choice of sample size.
Power analysis is useful both a priori and a posteriori.

However, in our view, when it is crucial is before carr-
ying out the research. And while we agree that inade-
quate work on power may lead to disappointment, we
also firmly believe that detailed analysis of the factors
that determine power gives researchers the capacity to
design better studies. We coincide with D’Amico,
Neilands, and Zambarano (2001) in their assertion that
rigorous a priori analysis of power makes it possible to
verify whether the effort, time and cost required by the
research design are fully justified.
As illustrated through the examples mentioned earlier,

there are a variety of research areas in which treatments
are administered to groups of people, rather than indivi-
duals. Moreover, in the majority of cases group mem-
bers have not been assigned to their groups in accordan-
ce with the rules of chance. In the best of cases intact
groups are assigned at random to the treatment condi-
tions. Consequently, in these circumstances it is neces-
sary to determine precisely the size of the units of obser-
vation and assignment in order to detect differences bet-
ween treatments and interactions, or the moderating
effects of the characteristics of subjects and/or groups on
variability of impact, since the units of assignment used
in such cases are not subjects, but groups. Furthermore,
as the resources involves in sampling the two types of
units differ substantially, sample sizes should be deter-
mined not only according to the effect size of interest
and the variations within and across groups, but also in
line with the costs involved in detecting such effects.
In the remainder of this work we shall illustrate how to

determine optimum sample sizes in order to show the
main effect of the intervention and of its interaction with
time in a hierarchical random-groups design with pre-
test and post-test. It can clearly be seen by means of the
procedure we shall use that this design is uniformly
superior for detecting differences between treatments to
the standard hierarchical random-groups design. In
order to achieve the objectives set we shall follow a pro-
cedure similar to that presented by Cohen (1988) and

Raudenbush and Liu (2000). Specifically, we shall use a
standardized model combining small (0.3), medium
(0.5) and large (0.70) measures of effect size, variances
within the groups equal to unit and variances across the
groups equal to the square of the standardized effect
sizes we have just specified. 

Illustration of how to obtain sample sizes
For the design referred to in the previous section, the
model can be formulated in scalar terms as follows: 

yijkl = µ +αj+ βk(j)+ γl+(αγ)jl + (βγ)k(j)l + εi(jkl)
(12)

where the observed value of the ith subject nested
within the jth condition and of the kth group in the lth

time (yijkl ) is expressed as a function of the general
measure (µ), of the effect of the jth treatment condition
(αj), of the random effect of the kth group nested within
condition j (βk(j)), of the effect of the lth time (γl), of the
combined effect of the jth condition and the lth time
((αγ)jl ), of the random combination of the kth group and
the lth time and of the random variation among the
group members (εi(jkl) ).
Alternatively, Equation 12 can be rewritten in terms of

a multilevel model. To do so, we begin by writing at the
first level a model similar to that of classical regression,
incorporating time as explanatory variable

yij= b0j + b1j Tij + eij ,     (13)

where yij denotes the score of the ith subject in the jth

group, the interceptor, b0j, is equal to the mean of the
group j, the slope, b1j, represents average change on the
post-test associated with a unit of change in the pre-test
and eij denotes the difference between the score of the
ij th subject and the mean of the jth group. For the sake
of simplicity, we assume that the error follows a normal
distribution with mean zero and constant variance across
the groups, that is, .
Next, we incorporate the hierarchical nature of the data

into the model. To do so we shall consider the regression
coefficients b0j and b1j as dependent variables that fluc-
tuate across the groups as a function of one mean plus
the treatment and the error. Specifically, the regression
coefficients are related to the treatment as follows:

b0j= β00 + β01 Tratj + u0j 
b1j= β10 + β11 Tratj + u1j (14)
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In the level 2 models it is assumed that in each group
the parameters b0j and b1j are distributed normally with
means  and , respectively, and matrix of variances-cova-
riances

(15)

It is also assumed that the errors corresponding to
levels 1 and 2 are independent of one another, that is, 
Substituting the expressions corresponding to Equation

15 in Equation 14, we obtain the following mixed
model: 

yij= β00 + β01 Tratj + u0j + β10 Tij + β11 Tij Tratj + ulj Tij + eij
(16)

where yij denotes the score of the ith subject in the jth

group,  represents the value resulting from averaging
the means of the groups,  represents the difference of
means in the response of interest between the groups
receiving treatment and those that do not, u0j indicates
whether there are differences between the means of the
groups in the dependent variable controlling the effect
of the treatment,   represents the average difference
between pre-test and post-test, β11 represents the mean
difference in the pre-test/post-test relationship between
the groups receiving treatment and the control groups,
ulj indicates whether the relationship between the pre-
test and post-test within the group varies across the
groups when the effect of the treatment is kept cons-
tant, and eij denotes the difference between the score of
the ijth subject and the mean of the jth group. The
coding system assumed is as follows: 1 for the cons-
tant, |0.5| for the treatment and time, and |0.25| for their
interaction.

Determination of sample size without considering the
costs of the research
Apart from specifying the form and magnitude of the
effect of the design, three other aspects are of key inte-
rest in a power analysis (see also Murray, 1998):
a. Selecting a statistical test for evaluating the effects of

the design.
b. Determining the distribution of the statistical test

selected.
c. Developing the non-centrality parameters of the

effects of interest, together with their corresponding
variances.

In the case of the main effect of the treatment, a valid
test of  is provided by the statistical test

(17)

When the hypothesis tested is true, the distribution of
the F statistic is approximated by means of a central F
distribution with  and  degrees of freedom for the nume-
rator and denominator, respectively. In the case of inter-
action, the F test is constructed in a similar way, specifi-
cally

(18)

with B01 and B11 defined as in (22) and (26).
If  is true, the F statistic follows a central F distribution

with  and  degrees of freedom for the numerator and
denominator, respectively.
However, under an alternative hypothesis, Fβ01 and

Fβ11 follow a non-central F distribution with the speci-
fied degrees of freedom and the following non-centrality
parameters:

(19)

and

(20)

Having specified the non-centrality parameters, selec-
ted the statistical test and determined the distribution,
we can obtain the power corresponding to the fixed
effects of the design by calculating the probability that a
non-central F with degrees of freedom  and  and non-
centrality parameter for  exceeds the corresponding cri-
tical value (Muller, La Vange Ramey & Ramey, 1992).
Formally

Power= 1 - Prob[F(v1, v2; λ)< Finv(1 - α, ω1, ω2)] 
(21)

where  represents the critical value obtained from the
inverse central F distribution function. The power values
can be revealed by using appropriate computational rou-
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tines. For example, the following expressions from the
SAS program can be used to obtain the power corres-
ponding to the effects of the random-groups hierarchical
design with pre-test and post-test:

By way of illustration, Table 1 shows the power obtai-
ned for different values of n, Q, effect sizes and varian-
ces across the groups.
The results in Table 1 suggest the appropriateness of

planning the design with a larger number of groups than
of members in each group, especially when the impact
size postulated is small and the variance of treatments
across groups is large. However, from an economic
point of view, this conclusion may be unrealistic, since,
as a general rule, sampling of groups is more costly than
sampling of group members. Thus, it is important to
carry out the power analysis considering also the costs
involved in the sampling process.

Determination of sample size according to sampling
costs
In order to carry out this analysis we need to know the
variance of the effects of the design. Following a proce-
dure similar to that described by Murray (1998) and
Raudenbush and Liu (2000), the standard error of the
main effect

(22)

can be easily obtained if we express the variance of the
group mean based on n dependent observations and r
repeated measures as

(23)

and the variance of the treatment condition j based on
q groups of the same size

(24)                      

Thus, assuming that the variances are homogeneous
across the groups, we have

(25)
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Table 1
Power for the main effect of the treatment without 

taking cost into account

Q N ωg δ Power Q Power Q Power

20 20 0.15 0.2 0.299 30 0.432 40 0.549
20 20 0.15 0.3 0.574 30 0.765 40 0.878
20 20 0.15 0.4 0.816 30 0.947 40 0.986
20 20 0.10 0.2 0.395 30 0.562 40 0.693
20 20 0.10 0.3 0.718 30 0.887 40 0.959
20 20 0.10 0.4 0.922 30 0.988 40 0.999
20 20 0.05 0.2 0.589 30 0.779 40 0.889
20 20 0.05 0.3 0.906 30 0.984 40 0.998
20 20 0.05 0.4 0.992 30 1.000 40 1.000
20 30 0.15 0.2 0.311 30 0.449 40 0.570
20 30 0.15 0.3 0.594 30 0.784 40 0.893
20 30 0.15 0.4 0.834 30 0.956 40 0.990
20 30 0.10 0.2 0.418 30 0.591 40 0.723
20 30 0.10 0.3 0.748 30 0.907 40 0.969
20 30 0.10 0.4 0.938 30 0.992 40 0.999
20 30 0.05 0.2 0.640 30 0.825 40 0.922
20 30 0.05 0.3 0.935 30 0.991 40 0.999
20 30 0.05 0.4 0.996 30 1.000 40 1.000
20 40 0.15 0.2 0.318 30 0.458 40 0.580
20 40 0.15 0.3 0.605 30 0.795 40 0.900
20 40 0.15 0.4 0.843 30 0.960 40 0.991
20 40 0.10 0.2 0.431 30 0.606 40 0.739
20 40 0.10 0.3 0.763 30 0.917 40 0.974
20 40 0.10 0.4 0.946 30 0.994 40 0.999
20 40 0.05 0.2 0.668 30 0.849 40 0.936
20 40 0.05 0.3 0.948 30 0.994 40 0.999
20 40 0.05 0.4 0.998 30 1.000 40 1.000
20 50 0.15 0.2 0.322 30 0.464 40 0.587
20 50 0.15 0.3 0.612 30 0.801 40 0.905
20 50 0.15 0.4 0.848 30 0.962 40 0.992
20 50 0.10 0.2 0.439 30 0.616 40 0.748
20 50 0.10 0.3 0.772 30 0.922 40 0.976
20 50 0.10 0.4 0.950 30 0.995 40 1.000
20 50 0.05 0.2 0.685 30 0.863 40 0.945
20 50 0.05 0.3 0.955 30 0.996 40 1.000
20 50 0.05 0.4 0.998 30 1.000 40 1.000

Note: Q = number of groups; N= members within the group, α= .05; ωg=

Variance due to the groups + variance due to the interaction. ω11= 0.10



Operating in the same way, we find that the variance
corresponding to the interaction effect

(26)

gives

(27)

From Equations 25 and 27 it can be appreciated that
both the number of groups and the number of members
in each group affect the accuracy of the estimations.
However, lack of statistical accuracy will be greater
when Q is reduced that when n is reduced. Thus, given
that the units of assignment affect the sensitivity of the
design more than the units of observation, researchers
should negotiate carefully, according to their costs, the
sizes of Q and n they include in the study for obtaining
appropriate power.
In accordance with Cochran (1977), in many two-stage

sampling designs the cost involved in collecting data can
be approximated by an expression of the form

C= C1nQ + C2Q                     (28)

where C refers to the total cost of the study, C1 to the
cost involved in sampling the members within each one
of the groups and C2 the cost associated with each one
of the groups.
Having determined the total cost of the study, the rese-

archer is in a position to select the value of n that mini-
mizes the variance of the design’s effects. For this, just
two simple operations are necessary. On the one hand, to
express the variances of the effects of the design taking
into account the costs of the study

(29)

and

(30)

And, on the other, to discover the value of n that mini-
mizes the variances of Equations 29 and 30. Deriving
with respect to n, we find (see Appendix)

(31)

and

(32)

We would have obtained identical values by maximi-
zing the non-centrality parameters of Equations 19 and
20 with respect to n.
Assuming that the relative cost between C2/C1 is esti-

mated at 2, 6, 8 and 10, Table 2 shows the values of n, Q
and power, for diverse effect sizes, variances across
groups and cost ratios.
With regard to the results in Table 2, four aspects are

worthy of mention. First, keeping effect size and varian-
ce across groups constant, power increases as the ratio of
costs decreases. Secondly, medium and large effects
produce powers that approach the value considered
ideal. However, it can also be seen that when treatment
groups are separated by 0.2 standard units, variances
lower than 0.10 will be required to provide powers that
detect the treatment effect, at least in 50% of cases, since
power increases as variance decreases. Third, the more
costly it is to sample the groups in relation to the num-
ber of members making up the group, the greater the size
of n and the smaller that of Q. Finally, it should be stres-
sed that detection of the interaction effect requires larger
sample sizes than detection of the main effect.
Nevertheless, from the qualitative point of view it can be
seen how the power functions of the main effect and
interaction effect are identical.

CONCLUSIONS
The derivations presented in the present work show that
the general linear model cannot be used to estimate the
parameters of the mixed model in Equation 2, since the
ordinary squared minima procedure assumes that the
errors are independent, with a mean of zero and constant
variance. However, in a model such as that of Equation
2 there are multiple sources of random variance, the
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errors are not necessarily independent and the variances
can differ among one another. In these cases neither the
general nor the generalized linear model are appropria-
te. The natural solution to the problems indicated is pro-
vided by the general linear mixed model if the probabi-
lity distribution of the response variable does not devia-
te from normality, or the generalized linear mixed model
if the data follow any other member of the exponential
family of distributions. For example, if we focus on the
model in Equation 16, we can see identify three sources

of random variation, which are duly estimated and inter-
preted by means of the mixed model approach.
Moreover, if there is dependence between the first-level
units nested within the second-level units, this is obtai-
ned independently of the error by estimating the varia-
tion in the second-level units induced by the grouping
(Carvajal, Baumler, Harrist & Porcel, 2001).
The present study also shows, for the hierarchical

design of groups at random with pre-test and post-test
(one of the most commonly-used designs, according to
Murray [1998], in the evaluation of prevention programs
based on organizations) how to maximize power for
highlighting the effects of treatments by selecting opti-
mum sample sizes, in terms of both number of groups
and their size. Although for achieving this aim we have
used, like Raudenbush and Liu (2000), a standardized
model, there will be plenty of cases in which researchers
are able to anticipate the value of the variance compo-
nents and the effect size using data from some previous
study or a pilot study. In any case, the results presented
in the tables show quite clearly some of the guidelines
for researchers using this type of design in the planning
of their work, with a view to obtaining sufficient statis-
tical power. Maintaining design, type of analysis and
number of replications constant, statistical accuracy
would probably be improved by the inclusion of some
auxiliary variable and using more rounds of observa-
tions.  
Finally, we should bear in mind some of the limitations

of the present work. Specifically, all the derivations refer
to the power analysis for a relatively simple design with
two experimental conditions (treatment and compari-
son), in which it was assumed that the dependent varia-
ble was continuous, with regularly-recorded data, balan-
ced groups and no lost observations. Although it lies
outside the brief of this work to extend the derivations
found to more real situations, such as non-balanced
designs, it would not be much more complicated to do
so.
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APPENDIX
Differentiating the  with respect to n and equalling to
zero, we have:
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Table 2
Power for effect of treatment and interaction as a function of costs

C2/C1 VAR ES N(T) Q(T) POWER(T) N(I) Q(I) POWER(I)

2 .16 .1 3 100 0.232 4 83 0.169
2 .16 .3 3 100 0.865 4 83 0.700
2 .16 .4 3 100 0.998 4 83 0.978
2 .06 .1 4 83 0.312 6 63 0.211
2 .06 .3 4 83 0.957 6 63 0.822
2 .06 .4 4 83 1.000 6 63 0.996
2 .01 .1 10 42 0.447 14 31 0.266
2 .01 .3 10 42 0.995 14 31 0.915
2 .01 .4 10 42 1.000 14 31 1.000
5 .16 .1 4 56 0.164 6 45 0.128
5 .16 .3 4 56 0.682 6 45 0.527
5 .16 .4 4 56 0.973 6 45 0.901
5 .06 .1 6 45 0.229 9 36 0.168
5 .06 .3 6 45 0.859 9 36 0.696
5 .06 .4 6 45 0.998 9 36 0.977
5 .01 .1 16 24 0.371 22 19 0.235
5 .01 .3 16 24 0.983 22 19 0.869
5 .01 .4 16 24 1.000 22 19 0.998

10 .16 .1 6 31 0.121 8 28 0.104
10 .16 .3 6 31 0.488 8 28 0.393
10 .16 .4 6 31 0.870 8 28 0.770
10 .06 .1 9 26 0.172 13 22 0.135
10 .06 .3 9 26 0.711 13 22 0.561
10 .06 .4 9 26 0.981 13 22 0.922
10 .01 .1 22 16 0.308 32 12 0.194
10 .01 .3 22 16 0.952 32 12 0.775
10 .01 .4 22 16 1.000 32 12 0.991
20 .16 .1 8 18 0.092 11 16 0.082
20 .16 .3 8 18 0.321 11 16 0.260
20 .16 .4 8 18 0.666 11 16 0.557
20 .06 .1 13 15 0.126 18 13 0.104
20 .06 .3 13 15 0.514 18 13 0.395
20 .06 .4 13 15 0.890 18 13 0.771
20 .01 .1 32 10 0.234 45 8 0.157
20 .01 .3 32 10 0.863 45 8 0.644
20 .01 .4 32 10 0.998 45 8 0.957

Note: C2/C1= ratio of costs; VAR= variance of impact across groups;
ES=standardized effect size; N(T)= value of n required for main effect;
Q(T)= number of groups required for main effect; POWER (T)= test
power corresponding to main effect; N(I)= value of n required for the
interaction; Q(I)= number of groups required for the interaction; POWER
(I)= test power corresponding to the interaction



Whilst differentiating the  with respect to n and equa-
lling to zero, we have:
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